首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28697篇
  免费   4113篇
  国内免费   2674篇
化学   19683篇
晶体学   263篇
力学   1903篇
综合类   273篇
数学   3265篇
物理学   10097篇
  2024年   28篇
  2023年   568篇
  2022年   528篇
  2021年   797篇
  2020年   1110篇
  2019年   1055篇
  2018年   875篇
  2017年   777篇
  2016年   1228篇
  2015年   1173篇
  2014年   1481篇
  2013年   1990篇
  2012年   2567篇
  2011年   2663篇
  2010年   1648篇
  2009年   1637篇
  2008年   1739篇
  2007年   1662篇
  2006年   1491篇
  2005年   1230篇
  2004年   940篇
  2003年   768篇
  2002年   692篇
  2001年   538篇
  2000年   519篇
  1999年   607篇
  1998年   557篇
  1997年   544篇
  1996年   615篇
  1995年   502篇
  1994年   457篇
  1993年   384篇
  1992年   362篇
  1991年   316篇
  1990年   247篇
  1989年   201篇
  1988年   157篇
  1987年   135篇
  1986年   125篇
  1985年   118篇
  1984年   87篇
  1983年   60篇
  1982年   41篇
  1981年   36篇
  1980年   17篇
  1978年   19篇
  1977年   23篇
  1976年   20篇
  1975年   28篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The N-loss predissociation mechanisms of the A 2Σ+ (2 2 A′) state of N2O+ to the first and second dissociation limits were studied in the C s symmetry. The potential energy curves (PECs) and minimum energy crossing points (MECPs) for the C s states of N2O+ were calculated at the CAS levels. On the basis of our CAS calculation results (CASPT2 energetic results and CASSCF spin orbit couplings), we suggest two processes for N-loss predissociation mechanisms of A 2Σ+ (2 2 A′) to the first and second limits. The first two steps in the two processes are the same: A 2Σ+ passes through the 2 2 A′/1 4 A″ MECP and then reaches the 1 4 A″ (1 4Σ) PEC. The 2 2 A′/1 4 A″ MECP has a bent geometry and is slightly higher in energy than the transition state along the 1 4 A″ PEC. Our mechanisms are different from the previously suggested mechanisms (via 1 4Π).  相似文献   
992.
For future all‐soluble organic thin film transistor (OTFT) applications, a new soluble n‐type air‐stable perylene diimide derivative semiconductor material with (trifluoromethyl)benzyl groups (TC–PDI–F) is synthesized. The film is formed by spin‐coating in air and optimized for OTFT fabrications. The transistor characteristics and air‐stability of the TC–PDI–F OTFTs is measured to investigate the feasibility of using solution‐processed TC–PDI–F for future OTFT applications. For all‐solution OTFT process applications, the transistor characteristics are demonstrated by using TC–PDI–F as an n‐type semiconductor material and liquid‐phase‐deposited SiO2 (LPD–SiO2) as a gate dielectric material. All processes (except material synthesis and electrode deposition) and electrical measurements are conducted in air.  相似文献   
993.
Sensitive detection of molecules by using the surface‐enhanced Raman scattering (SERS) technique depends on the nanostructured metallic substrate and many efforts have been devoted to the preparation of SERS substrates with high sensitivity, stability, and reproducibility. Herein, we report on the fabrication of stable monolithic nanoporous silver (NPS) by chemical dealloying of Ag–Al precursor alloys with an emphasis on the effect of structural evolution on SERS signals. It was found that the dealloying conditions had great influence on the morphology (the ligament/pore size) and the crystallization status, which determined the SERS signal of rhodamine 6G on the NPS. NPS with small pores, low residual Al, and perfect crystallization gave high SERS signals. A high enhancement factor of 7.5×105 was observed on bare NPS obtained by dealloying Ag30Al70 in 2.5 wt % HCl at room temperature followed by 15 min aging at around 85 °C. After coating Ag nanoparticles on the NPS surface, the enhancement factor increased to 1.6×108 owing to strong near‐field coupling between the ligaments and nanoparticles.  相似文献   
994.
995.
Lapatinib is required as a therapy for advanced or metastatic breast cancer. However, its reactive metabolite (RM) nitroso was implicated in idiosyncratic hepatotoxicity. Density functional theory was performed to explore the metabolism of nitroso formation. Primary hydroxylation amine is a critical intermediate to produce nitroso. Three pathways from secondary alkylamine lapatinib to primary hydroxylation amine were designed and discussed. Calculation results show that it is difficult to form primary hydroxylation amine through common proposed hydrolysis nitrone with a barrier of 36.67 kcal/mol (path A), but it is smoothly formed by paths B and C with moderate determined barriers of 15.09 kcal/mol and 16.56 kcal/mol, respectively. Subsequently, we demonstrate that the mechanism of nitroso formation from primary hydroxylation amine should be a double hydrogen atom transfer rather than the previously proposed hydrolysis primary dihydroxylation amine. The barrier of the former is obviously lower than the latter. Based on metabolism results and structure analysis, several lapatinib derivatives are designed. Molecular docking of designed compounds with epidermal growth factor receptor (EGFR) shows that they share a similar binding mode with lapatinib. In particular, 2a to 2d show similar binding energy to lapatinib. This work showed metabolism details of nitroso formation from lapatinib and its structure modification, which can enrich the metabolism of amine drugs and provide guidance for drug optimization and design.  相似文献   
996.
The acid and transport properties of the anhydrous Keggin‐type 12‐tungstophosphoric acid (H3PW12O40; HPW) have been studied by solid‐state 31P magic‐angle spinning NMR of absorbed trimethylphosphine oxide (TMPO) in conjunction with DFT calculations. Accordingly, 31P NMR resonances arising from various protonated complexes, such as TMPOH+ and (TMPO)2H+ adducts, could be unambiguously identified. It was found that thermal pretreatment of the sample at elevated temperatures (≥423 K) is a prerequisite for ensuring complete penetration of the TMPO guest probe molecule into HPW particles. Transport of the TMPO absorbate into the matrix of the HPW adsorbent was found to invoke a desorption/absorption process associated with the (TMPO)2H+ adducts. Consequently, three types of protonic acid sites with distinct superacid strengths, which correspond to 31P chemical shifts of 92.1, 89.4, and 87.7 ppm, were observed for HPW samples loaded with less than three molecules of TMPO per Keggin unit. Together with detailed DFT calculations, these results support the scenario that the TMPOH+ complexes are associated with protons located at three different terminal oxygen (Od) sites of the PW12O403− polyanions. Upon increasing the TMPO loading to >3.0 molecules per Keggin unit, abrupt decreases in acid strength and the corresponding structural variations were attributed to the change in secondary structure of the pseudoliquid phase of HPW in the presence of excessive guest absorbate.  相似文献   
997.
In this scanning‐tunneling‐microscopy/spectroscopy study (STM/STS), samples of isolated and close‐packed dibenzo[g,p]chrysene (DBC), a nonplanar polyaromatic compound, are used as model systems to demonstrate the effect of intermolecular interactions on the electronic structures. For dropcast films, DBC molecules adopt an edge‐on orientation in a close‐packed structure on graphite. Isolated DBC molecules are prepared on graphite from a DBC‐coated STM tip by a ca. 7 V/10 μs pulse. STS spectra for both isolated‐ and close‐packed DBC molecules exhibit diode‐like IV curves in which the latter shows a turn‐on voltage (0.47 V) smaller than that of the former (0.91 V). The diode‐like behaviors are attributed to the more‐facile tunneling of electrons through the HOMO of DBC than through the LUMO. The reduced turn‐on voltage for the films is ascribed to the diminished HOMO–LUMO gap based on the results of DFT (density functional theory) simulations for the energy‐level couplings of π‐stacked DBC molecules.  相似文献   
998.
Bovine serum albumin (BSA)‐conjugated MxSey (M=Ag, Cd, Pb, Cu) nanomaterials with different shapes and sizes were synthesized in water at room temperature by a protein‐directed, solution‐phase, green synthetic method. The method features very low energy consumption and nontoxic reagents with high yields of concentrated nanoparticles. The obtained bioconjugated nanoparticles have good dispersibility, bioactivity, and biocompatibility. In addition, various functional groups of protein on the surface of the nanocrystals are suitable for further biological interactions or couplings, which is very important for further biological applications.  相似文献   
999.
Two cyclopropyl allenylidene complexes [Ru]=CCC(R)(C3H5) ([Ru]=[RuCp(PPh3)2], Cp=Cyclopentadienyl; R=thiophene ( 2a ) and R=Ph ( 2b )) are prepared from the reactions of [Ru]Cl with the corresponding 1‐cyclopropyl‐2‐propyn‐1‐ol in the presence of KPF6. Thermal treatment, halide‐anion addition, and palladium‐catalyzed reactions of 2a and 2b all lead to a ring expansion of the cyclopropyl group, giving the vinylidene complexes 4a and 4b , respectively, each with a five‐membered ring. This ring expansion proceeds by C C bond formation between Cβ of the cumulative double bond and a methylene group of the cyclopropyl ring. In the reaction of 2a with pyrrole, consecutive formation of two C C bonds, one between C‐2 of pyrrole and Cγ of 2a and the other between C‐3 of pyrrole and Cα, results in the formation of 6a . The reaction proceeds by addition of pyrrole and 1,3‐proton shifts. The hydrogenation of 2a by NaBH4 is carried out in different solvents. The cumulative double bonds are reduced regioselectively to give a mixture of 7a and 8a . Interestingly, use of different solvents leads to different ratios of 7a and 8a . Presence of a protic solvent like methanol in dichloromethane or chloroform solution increases the yield of 8a , thus revealing that both the rates of hydroboration and deboronation increase. The structures of two new complexes 4a and 6a have been firmly established by X‐ray diffraction analysis.  相似文献   
1000.
Hexamethyldisiloxane [HMDSO, (CH3)3-SiOSi-(CH3)3] is an important precursor for SiO2 formation during flame-based silica material synthesis. As a result, HMDSO reactions in flame have been widely investigated experimentally, and many results have indicated that HMDSO decomposition reactions occur very early in this process. In this paper, quantum chemical calculations are performed to identify the initial decomposition of HMDSO and its subsequent reactions using the density functional theory at the level of B3LYP/6-311+G (d, p). Four reaction pathways—(a) Si O bond dissociation of HMDSO, (b) Si C bond dissociation of HMDSO, (c) dissociation and recombination of Si O and Si C bonds, and (d) elimination of a methane molecule from HMDSO—have been examined and identified. From the results, it is found that the barrier of 84.38 kcal/mol and Si O bond dissociation energy of 21.55 kcal/mol are required for the initial decomposition reaction of HMDSO in the first pathway, but the highest free energy barrier (100.69 kcal/mol) is found in the third reaction pathway. By comparing the free energy barriers and reaction rate constants, it is concluded that the most possible initial decomposition reaction of HMDSO is to eliminate the CH3 radical by Si C bond dissociation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号